Évaluation de l'efficacité de certains herbicides pour le contrôle du pâturin annuel dans les gazonnières

Rapport mi-étape

Projet réalisé dans le cadre du Programme de soutien à l'innovation horticole du ministère de l'Agriculture, des Pêcheries et de l’Alimentation du Québec

Par :

Caroline Martineau, DTA, agr., conseillère en agroenvironnement
Suzanne Simard, B. Sc., assistante aux chargés de projets

Janvier 2013
Cette recherche a été réalisée grâce à une aide financière accordée dans le cadre du Programme de soutien à l’innovation horticole du ministère de l’Agriculture, des Pêcheries et de l’Alimentation
TABLE DES MATIÈRES

1. Description du projet .. 5
 1.1. Objectifs du projet .. 5
2. Traitements ... 6
 2.1. Dispositif expérimental ... 6
3. Étapes réalisées ... 8
4. Description sommaire des étapes réalisées .. 9
 4.1. Piquetage des unités expérimentales avant l’ensemencement 9
 4.2. Ensemencement des sites d’essai .. 10
 4.3. Application des traitements .. 11
 4.4. Prises de données ... 12
 4.4.1. Pourcentage de recouvrement du pâturin du Kentucky (PDK) 13
 4.4.2. Pourcentage de recouvrement du pâturin annuel .. 14
 4.4.3. Présence de mauvaises herbes et identification .. 16
 4.4.4. Phytotoxicité ... 17
 4.4.5. Couleur ... 19
5. Résultats préliminaires ... 20
 5.1. Pourcentage de recouvrement du pâturin du Kentucky (PDK) 20
 5.1.1. Site d’essai no. 1 .. 20
 5.1.2. Site d’essai no. 2 .. 21
 5.2. Pourcentage de recouvrement du pâturin annuel (Poa annua) 22
 5.2.1. Site d’essai no.1 .. 22
 5.2.2. Site d’essai no. 2 .. 23
 5.3. Autres observations préliminaires .. 24
6. Étapes à venir .. 25
7. Conclusion ... 26
Remerciements .. 27
Liste des tableaux

Tableau 1: Liste et description des différents traitements ... 6
Tableau 2: Étapes réalisées en 2012. .. 8
Tableau 3: Étapes à venir en 2013-2014.. 25

Liste des figures

Figure 1 : Schéma d’un site d’essai avec distribution aléatoire des traitements à l’intérieur des blocs ... 7
Figure 2 : Évolution de la densité du pâturin du Kentucky au site d’essai no. 1............................... 20
Figure 3 : Évolution de la densité de pâturin du Kentucky au site d’essai no. 2.............................. 21
Figure 4 : Évolution du recouvrement du pâturin annuel au site no. 1 ... 22
Figure 5 : Évolution du recouvrement du pâturin annuel au site no. 2 ... 23
Rapport mi-étape

1. Description du projet

Le présent projet aborde une problématique dont les solutions actuellement disponibles sont très limitées. Il vise à identifier des produits offrant un contrôle intéressant du pâturin annuel (*Poa annua*) dans la production du gazon en plaques composé de pâturin du Kentucky (*Poa pratensis*) et les périodes optimales d'application (automne vs printemps) tout en réduisant au maximum les problèmes de phytotoxicité possibles sur le gazon cultivé. Sur une durée totale de 2 ans, soit de juillet 2012 à juillet 2014, ce projet met à l'essai 5 produits phytosanitaires à différentes périodes de la saison de croissance. Il permettra d'acquérir des connaissances sur le pâturin annuel en production de gazon, lesquelles sont actuellement déficientes pour ce secteur.

1.1. Objectifs du projet

L'objectif principal du projet est d'évaluer l'efficacité de différents herbicides homologués au Canada dans d'autres cultures, pour le contrôle du pâturin annuel dans la production en gazonnière du pâturin du Kentucky.

Les objectifs spécifiques du projet sont :
1. évaluer l'efficacité des herbicides sélectionnés appliqués en pré-émergence pour le contrôle du pâturin annuel lors du semis du gazon à la fin de l'été;
2. évaluer l'efficacité des herbicides sélectionnés appliqués en post-levée pour le contrôle du pâturin annuel;
3. évaluer l'efficacité des herbicides sélectionnés sur les autres adventices présentes dans les parcelles;
4. mesurer l'effet phytotoxique des herbicides sélectionnés sur le gazon cultivé;
5. comparer l'efficacité des herbicides sélectionnés à celle de l'herbicide homologué pour cet usage au Canada;
6. réaliser une analyse comparative des coûts d'utilisation des différents herbicides.
2. Tritements

Tableau 1 : Liste et description des différents traitements

<table>
<thead>
<tr>
<th>Traitements</th>
<th>Matière active</th>
<th>Nom commercial</th>
<th>Description</th>
<th>Dose (ha)</th>
<th>Volume (L/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mesotrione</td>
<td>CALLISTO</td>
<td>1 application avant le semis</td>
<td>300 ml</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1 application après semis, après 2 tontes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1 application au printemps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Combinaison T1 et T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Combinaison T2 et T3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ethofusémate</td>
<td>ETHO</td>
<td>1 application à l’automne, 8 sem. après émergence du PDK*</td>
<td>4,8 L</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1 application au printemps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Combinaison de T6 et T7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Linuron</td>
<td>LOROX L</td>
<td>1 application au printemps</td>
<td>3,5 L</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>2 applications (printemps + début été)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dithiopyr</td>
<td>DIMENSION</td>
<td>1 application 5 jours après levée du PDK</td>
<td>3,5 L</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1 application au printemps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>Combinaison T11 et T12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Bispyribac</td>
<td>VELOCITY</td>
<td>1 application au printemps après le 1er juin (produit homologué en gazonnière)</td>
<td>31 g</td>
<td>234</td>
</tr>
<tr>
<td>15</td>
<td>Eau</td>
<td>Témoin (+)</td>
<td>Appliqué à chaque fois qu’un traitement est fait sur les autres UE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PDK = Pâturin du Kentucky

2.1. Dispositif expérimental

- Il y a 2 sites d’essai d’une superficie de 365 m² chacun, chez 2 producteurs de gazon;
- Le dispositif est un plan en blocs complets comportant 4 blocs dans lesquels 15 traitements sont distribués aléatoirement, pour un total de 60 unités expérimentales;
- Chaque unité expérimentale mesure 1 mètre par 2 mètres;
- Il y a une rangée tampon de 1 mètre entre chaque unité expérimentale et de 2 mètres entre chaque bloc.
Figure 1 : Schéma d’un site d’essai avec distribution aléatoire des traitements à l’intérieur des blocs

Distance entre les unités expérimentales = 1 m
Distance entre les blocs = 2 m

Piquets d’identification orange

26 mètres
3. Étapes réalisées

- Le projet a débuté au mois de juillet 2012 par l’établissement du protocole, l’achat des produits et le choix des sites d’essai;
- Les étapes réalisées à partir de juillet 2012 sont listées ci-dessous :

Tableau 2 : Étapes réalisées en 2012

<table>
<thead>
<tr>
<th>Étapes réalisées</th>
<th>Producteur 1</th>
<th>Producteur 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Établissement du protocole</td>
<td></td>
<td>Juillet</td>
</tr>
<tr>
<td>Achat du matériel</td>
<td></td>
<td>Juillet</td>
</tr>
<tr>
<td>Piquetage des unités expérimentales</td>
<td>27 juillet</td>
<td>8 août</td>
</tr>
<tr>
<td>Ensemencement des unités expérimentales</td>
<td>27 juillet</td>
<td>8 août</td>
</tr>
<tr>
<td>Application des traitements T1, T4, T15</td>
<td>30 juillet</td>
<td>8 août</td>
</tr>
<tr>
<td>Prise de données T1, T4, T11, T13, T15</td>
<td>16 août</td>
<td>21 août</td>
</tr>
<tr>
<td>Application des traitements T11, T13</td>
<td>16 août</td>
<td>21 août</td>
</tr>
<tr>
<td>Prise de données T1, T4, T11, T13, T15</td>
<td>30 août</td>
<td>7 septembre</td>
</tr>
<tr>
<td>Tonte</td>
<td>-</td>
<td>17 septembre</td>
</tr>
<tr>
<td>Fertilisation</td>
<td>Début octobre</td>
<td>17 septembre</td>
</tr>
<tr>
<td>Prise de données T1, T4, T11, T13, T15</td>
<td>3 octobre</td>
<td>12 octobre</td>
</tr>
<tr>
<td>Application des traitements T2, T4, T5, T15</td>
<td>3 octobre</td>
<td>12 octobre</td>
</tr>
<tr>
<td>Herbicide à feuilles larges</td>
<td>Début septembre</td>
<td>-</td>
</tr>
<tr>
<td>Tonte</td>
<td>octobre</td>
<td>26 octobre</td>
</tr>
<tr>
<td>Prise de données T2, T4, T5, T15</td>
<td>25 octobre</td>
<td>6 novembre</td>
</tr>
<tr>
<td>Compilation des données</td>
<td>Automne 2012</td>
<td></td>
</tr>
<tr>
<td>Rapport mi-étape</td>
<td></td>
<td>Janvier 2013</td>
</tr>
</tbody>
</table>
4. **Description sommaire des étapes réalisées**

4.1. **Piquetage des unités expérimentales avant l'ensemencement**
- Des drapeaux de drainage orange ont été placés en bordure du champ afin de repérer l'emplacement du site d'essai;
- Les positions et dimensions des unités expérimentales et des blocs ont été mesurées à l'aide d'un ruban à mesurer de 60 mètres;
- Les 2 sites d'essai ont été piquetés à l'aide de piquets de bois de 15 cm biseautés;
- Une fois enfoncés jusqu'au niveau du sol, l'extrémité des piquets a été peinte à l'aide d'un aérosol de couleur orange;
- Des carrés de chloroplaste ont été ajoutés sur les piquets des 4 coins de la surface totale;
- À chacune des visites en cours de saison, les piquets et chloroplastes étaient peinturés à nouveau.
4.2. Ensemencement des sites d’essai

- Les 2 sites d’essai ont été ensemencés à l’aide d’un semoir de type Brillon;
- Les taux de semis et les variétés de paturin du Kentucky utilisées ont été laissés à la discrétion du producteur;
- Un engrais d’établissement au choix du producteur a été appliqué avant le semis.
4.3. Application des traitements

- Pour chacune des dates d’application des différents traitements, la procédure était la même, et ce aux 2 sites d’essai;
- Les produits à pulvériser étaient mesurés à l’avance et apportés dans une fiole;
- Un pulvérisateur à dos avec pompe électrique de la compagnie Dramm a été utilisé;
- Afin de s’assurer que le volume requis de bouillie serait appliqué sur chacune des unités expérimentales, il a fallu prédéterminer, en fonction du débit du pulvérisateur et du type de buse utilisée (buse double), le temps nécessaire à la pulvérisation de ce volume exact. Un chronomètre a donc été utilisé à chaque pulvérisation;
- La buse double a été choisie parce que le résultat au sol était plus uniforme que celui de la buse simple;
- La bouillie de pulvérisation était préparée sur place en utilisant un cylindre gradué pour mesurer la quantité d’eau nécessaire;
- Un grand quadrat de PVC de 1 mètre X 2 mètres était utilisé afin de respecter la grandeur de chaque unité expérimentale;
- Une personne faisait la préparation de la bouillie et l’application des traitements tandis qu’une autre s’assurait que les traitements étaient faits aux bons endroits et que la durée de pulvérisation était respectée;
- Les 2 personnes portaient les habits et équipements de protection recommandés pour faire l’application de pesticides;
- Le traitement témoin T15 (eau) était toujours effectué en premier lieu afin de réduire le temps passé en habit de pulvérisation;
- Les mesures de triple rinçage du pulvérisateur et des contenants étaient faites après chaque pulvérisation.
4.4. Prises de données

- Pour chacune des prises de données, le grand quadrat de 1 mètre X 2 mètres était utilisé afin de s’assurer de l’emplacement exact de chaque unité expérimentale;
- 3 prises de données étaient faites par unité expérimentale;
- Ces 3 prises de données étaient réalisées à l’intérieur d’un 2ème quadrat de 30 cm x 30 cm lancé aléatoirement à l’intérieur de l’unité expérimentale.
4.4.1. Pourcentage de recouvrement du pâturin du Kentucky (PDK)
- La présence du pâturin du Kentucky est une évaluation visuelle à l'intérieur du quadrat de 30 cm X 30 cm;
- Le recouvrement varie de 0 à 100 %, zéro étant aucune présence de PDK et 100 % étant un recouvrement total de PDK, sans aucun autre végétal ni de sol à nu.
4.4.2. Pourcentage de recouvrement du pâturin annuel

- La présence du pâturin annuel est une évaluation visuelle à l'intérieur du quadrat de 30 cm X 30 cm ;
- Le recouvrement varie de 0 à 100 %, zéro étant aucune présence de pâturin annuel et 100 % étant un recouvrement total de pâturin annuel, sans aucun autre végétal ni de sol à nu.
Évaluation de l’efficacité de certains herbicides pour le contrôle du pâturin annuel dans les gazonnières
4.4.3. Présence de mauvaises herbes et identification

- La présence des mauvaises herbes est une évaluation visuelle à l’intérieur du quadrat de 30 cm X 30 cm;
- Le recouvrement varie de 0 à 100 %, zéro étant aucune présence et 100 % étant un recouvrement total de mauvaises herbes, sans aucune présence de pâturin du Kentucky ou de pâturin annuel, ni de sol à nu;
- L’identification des mauvaises herbes se fait à l’aide du Guide d’identification des mauvaises herbes du Québec (MAPAQ);
- Si la base de la mauvaise herbe est à l’extérieur du petit quadrat, elle n’est pas considérée. Sinon son pourcentage est compté;
- S’il y a un doute sur l’identification, la mauvaise herbe en cause est notée comme mauvaise herbe à feuilles larges ou mauvaise herbe graminée.
4.4.4. Phytotoxicité

- Les symptômes de phytotoxicité potentielle sont des données d'évaluation visuelle;
- Les symptômes sont observés sur le pâturin du Kentucky et sur le pâturin annuel;
- Ils sont notés selon 4 catégories :
 o présence de la maladie de la rouille ;
 o présence de la maladie du blanc ;
 o présence de taches claires ou jaunes (chlorose);
 o présence de taches brunes (nécroses).
- Le pourcentage de présence de chaque type de symptôme est évalué.
Évaluation de l’efficacité de certains herbicides pour le contrôle du pâturin annuel dans les gazonnières
4.4.5. Couleur

- L’évaluation de la couleur du pâturin du Kentucky est visuelle à l’intérieur du petit quadrat de 30 cm X 30 cm;
- Pour que cette évaluation soit la plus uniforme et objective possible, elle est faite à partir de l’éventail de couleurs de la *Royal Horticultural Society*;
- Suivant la levée du pâturin du Kentucky, la palette dont la teinte était la plus représentative de celle des brins de gazon et ce, sur l’ensemble du site d’essai, a été notée (ex : palette 137 B);
- Cette teinte est considérée comme la couleur de référence pour la durée du projet et elle est égale à 5 sur une échelle de 1 à 10;
- Une couleur plus pâle est notée sous la cote 5 et une couleur plus foncée, au-dessus de la cote 5.
5. Résultats préliminaires
Les résultats n’ayant pas été analysés statistiquement, nous ne pouvons pas identifier à cette étape-ci les différences significatives. Les résultats préliminaires sont donc basés sur les observations visuelles et sur les différences notables sur les graphiques de résultats. Dans le cadre de ce rapport, les données présentées sont tirées des trois premières dates de prise de données. Les données observées les plus intéressantes concernent, pour le moment, le recouvrement du pâturin du Kentucky et de pâturin annuel (*Poa annua*) et ce, aux 2 sites d’essai.

5.1. Pourcentage de recouvrement du pâturin du Kentucky (PDK)

5.1.1. Site d’essai no. 1
- Le graphique 1 montre que pour ce site d’essai, le pourcentage de recouvrement du PDK est supérieur pour les traitements T1 et T4 (CALLISTO) que pour les traitements T11 et T13 (DIMENSION). Cette observation s’applique pour chacune des 3 dates de prises de données;
- Les traitements T1 et T4 (CALLISTO) présentent un pourcentage de recouvrement du PDK semblable ou supérieur au T15 (eau);
- Parmi tous les traitements, T11 et T13 (DIMENSION) démontrent le plus important effet négatif sur le pourcentage de présence de PDK;
- Les traitements T11 et T13 (DIMENSION) présentent un pourcentage de présence de PDK inférieur au traitement à l’eau seulement (T15);
- Le DIMENSION semble donc avoir un effet négatif sur le recouvrement du pâturin du Kentucky comparativement au CALLISTO. Cependant, il est possible de croire que cet effet soit temporaire et que le gazon puisse reprendre la majorité du recouvrement après quelques semaines.

Figure 2 : Évolution du recouvrement du pâturin du Kentucky au site d’essai no. 1
Site d’essai no. 2
- Contrairement au site d’essai no. 1, le traitement T1 (CALLISTO) n’a pas démontré un plus haut pourcentage de présence de PDK mais il reste tout de même plus élevé que les traitements T13 (DIMENSION) et témoin (eau). Cependant, le T4 (CALLISTO) a obtenu la plus haute densité de PDK;
- Il est intéressant de noter que c’est le T15 (eau) qui démontre le plus bas taux de présence de pâturin du Kentucky;
- Il est important de noter qu’au site no. 2, il y avait une très forte présence de pâturin annuel, (voir graphique 4), dès le début de l’essai. Cette forte population ainsi que son importante hauteur ont pu avoir un effet sur la précision de la prise de données.

Figure 3 : Évolution de la densité du pâturin du Kentucky au site d’essai no. 2

- Aux 2 sites d’essai, les traitements T11 et T13 (DIMENSION) semblent démontrer un effet négatif sur la présence du PDK plus important que le traitement à l’eau (T15);
- Aux 2 sites d’essai, à la 3e date de prise de données, le T4 (CALLISTO) démontre le plus haut pourcentage de présence du PDK;
- Le site d’essai no.2 présente un pourcentage moyen de présence du PDK très inférieur au site d’essai no. 1. Ceci s’explique entre autre par la très forte pression du pâturin annuel au site no. 2.
5.2. Pourcentage de recouvrement du pâturin annuel (*Poa annua*)

5.2.1. Site d'essai no.1
- À la 3ᵉ et dernière prise de données, les traitements T1 et T4 (CALLISTO) possèdent le plus faible pourcentage de présence du pâturin annuel;
- Malgré que le traitement T15 ne soit que de l’eau, il présentait un pourcentage inférieur de pâturin annuel comparativement au traitement T13 (DIMENSION).

Figure 4 : Évolution du recouvrement du pâturin annuel au site d'essai no. 1
5.2.2. Site d'essai no. 2
- Les traitements T1 (CALLISTO) et T13 (DIMENSION) semblent offrir un moins bon contrôle du pâturin annuel que le T15 qui n’est que de l’eau;
- Contrairement au site no. 1, les traitements T1 et T4 (CALLISTO) ne présentent pas un pourcentage de présence de pâturin annuel inférieur aux traitements T11 et T13 (DIMENSION).

Figure 5 : Évolution du recouvrement du pâturin annuel au site d’essai no. 2

- En comparant les 2 graphiques, en général, le pourcentage de présence de pâturin annuel au site no. 2 était largement supérieur (autour de 75 %) au pourcentage présent au site d’essai no.1 (autour de 15 %).
5.3. Autres observations préliminaires

- De façon générale, sur le terrain, on reconnaît rapidement les unités expérimentales qui ont eu un traitement d'herbicide : la présence de mauvaises herbes y est moins élevée, en particulier celles traitées au CALLISTO;
- Aux 2 sites d’essai, les différences visuelles entre les unités expérimentales étaient plus importantes au cours des premières prises de données. Elles se sont estompées par la suite;
- En général, les mauvaises herbes à feuilles larges sont bel et bien présentes à l’ensemble de la surface étudiée, à l’exception des parcelles T1 et T4 où il semble que les herbicides CALLISTO et DIMENSION aient eu un effet supérieur sur leur contrôle sans toutefois pouvoir dire pour le moment lequel des deux avait un meilleur contrôle;
- Les cotes de couleur sont en général toujours les mêmes pour tous les traitements, au cours d’une même date de prise de données;
- Le site d’essai no. 2 possède un très haut pourcentage de présence de pâturin annuel. Les brins d’herbe étaient très hauts (environ 20 cm). Il est pertinent de se demander si cette importante population et hauteur peuvent avoir un impact sur l’effet des pulvérisations : les produits n’atteignent pas correctement toutes les herbes;
- Au site d’essai no. 2, le pâturin du Kentucky, le pâturin annuel et la végétation présente (mauvaises herbes) étaient hautes à partir de la 2e prise de donnée. Ceci a pu avoir un effet sur la prise de données (évaluation visuelle) en rendant plus difficile la distinction entre le PDK et le pâturin annuel et la présence des mauvaises herbes à feuilles larges;
- Les mauvaises herbes présentes sont en général des annuelles. Il sera possible d’observer au printemps prochain la présence des mauvaises herbes vivaces;
- Les 2 herbicides appliqués durant de cette première année (CALLISTO et DIMENSION) semblent avoir eu un effet négatif sur le pourcentage de présence et la croissance du PDK, surtout en début de saison. Cet effet semble s’atténuer avec le temps.
6. **Étapes à venir**

- Le projet d’une durée de 2 ans se terminera en juillet 2014;
- La suite des traitements est à venir en 2013 et 2014;
- Les traitements T6-T7-T8 n’ont pas pu être débutés en 2012 pour cause de non disponibilité de l’herbicide ETHO. Ils ont donc été reportés à 2013 et 2014.
- Il reste à se procurer les herbicides suivants pour les traitements printaniers : ETHO et VELOCITY. S’ils s’avéraient non disponibles en 2013, ils seront remplacés par d’autres traitements en utilisant les produits dont on dispose déjà. Le protocole sera alors ajusté en conséquence.
- D’autres données restent à prendre au cours de l’année 2013 et 2014 afin de répondre aux objectifs du projet;
- Voici un résumé des étapes à venir :

Tableau 3 : Étapes à venir en 2013-2014

<table>
<thead>
<tr>
<th>Étapes à venir</th>
<th>Dates 2013-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajustement du protocole selon la disponibilité des herbicides en 2013 et en 2014</td>
<td>Hiver 2013</td>
</tr>
<tr>
<td>Prise de données</td>
<td>Printemps et été 2013</td>
</tr>
<tr>
<td>Application des traitements T3, T5, T7, T8, T9, T10, T12, T13, T14 et T15</td>
<td>Printemps 2014</td>
</tr>
<tr>
<td>Remettre les sites en bon état</td>
<td>Juin 2014</td>
</tr>
<tr>
<td>Analyses statistiques</td>
<td>Mai-juin 2014</td>
</tr>
<tr>
<td>Interprétation des résultats</td>
<td>Mai-juin 2014</td>
</tr>
<tr>
<td>Analyse comparative des coûts d’utilisation des herbicides</td>
<td>Mai-juin 2014</td>
</tr>
<tr>
<td>Dépôt du rapport final</td>
<td>Juillet 2014</td>
</tr>
<tr>
<td>Diffusion des résultats</td>
<td>Automne 2013 et 2014</td>
</tr>
</tbody>
</table>
7. Conclusion

Les résultats préliminaires obtenus semblent nous indiquer dès cette première année que certains herbicides appliqués ont eu un effet sur le pourcentage de présence du pâturin annuel (*Poa annua*). Les traitements T1 et T4 (CALLISTO) sont ceux qui, pour l'instant, démontrent le meilleur contrôle de cette adventice graminée. Ce contrôle est moins apparent au site d’essai no. 2. Il est probable que cela soit dû à la très grande présence de pâturin annuel, réduisant l'efficacité des traitements. Il n’apparaît pas que l’herbicide DIMENSION (T11 et T13) ait eu un effet négatif important sur le pourcentage de présence du pâturin annuel. Cependant, cet herbicide doit être appliqué une seconde fois sur les unités expérimentales T13 au printemps 2013, ce qui pourrait aider davantage à contrôler le pâturin annuel.

Le gazon a somme toute la même couleur d’une UE à l’autre, au cours d’une même prise de données. Le recouvrement de pâturin du Kentucky n’est pas aussi dense au site no. 2, ce qui s’explique par la très forte présence de pâturin annuel. Cependant, suite aux seules observations visuelles, les données relatives à la couleur du gazon et aux symptômes de phytotoxicité risquent de ne pas mener à des résultats concluants au même titre que les pourcentages de présence de pâturin du Kentucky. Il faudra toutefois attendre l’analyse finale de toutes les données après la deuxième année pour pouvoir tirer une conclusion valable.

Il est important de mentionner qu’il était parfois très difficile de faire la distinction entre un plant de pâturin du Kentucky et un plant de pâturin annuel. Ceci peut avoir eu un léger effet sur les pourcentages notés bien que les tendances d’une très grande présence de l’une ou l’autre des deux cultures n’en soient pas changées.

À chaque prise de données, une photo individuelle des unités expérimentales a été prise. Ces photos ne peuvent fournir des données statistiques, mais il pourra s’avérer pertinent de les comparer à la fin du projet, si des différences visuelles sont présentes.

Finalement, les objectifs de la première année du projet ont été rencontrés et le projet suit les échéanciers prévus. Certains changements mineurs au protocole auront lieu pour la deuxième année s’il advenait qu’un des produits ne soit pas disponible.
Remerciements

Nous aimerions remercier le ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec pour son aide financière apportée dans le cadre du Programme de soutien à l’innovation horticole. Notre gratitude s’adresse particulièrement aux deux entreprises de production de gazon en plaques, nos partenaires indispensables dans ce projet.

Nous remercions sincèrement M. Luc Urbain du MAPAQ pour son appui et ses précieux conseils.

Merci à Syngenta Canada, Dow AgroSciences Canada et TKI NovaSource de nous avoir gracieusement offert des échantillons de leurs produits phytosanitaires et l’autorisation de les utiliser pour les fins de cette étude.

Nous tenons également à remercier M. Guillaume Grégoire de l’Université Laval pour son aide technique au cours de l’analyse des données.

Finalement, nous remercions l’Association des producteurs de gazon du Québec (APGQ) pour son appui ainsi que notre collègue de l’IQDHO, Émilie Lemaire et notre ancienne collègue Sophie Rochefort pour leur importante contribution au projet.